The generator matrix

 1  0  0  1  1  1  1  1  1  1  3  1 X+3  1  1 2X  1 2X  1  1 2X+3  1  1 X+6  1  1  1  6  1  1  1  1  1  3  0  1 2X+6  1  1  1  X  1  1  1 2X+6  1  1  1  3  1  1  1 X+3  1  X  1  1  1 X+3  1  1  1  1  X 2X+3  1  1  0  1  1  1  1  1  1 2X+3 2X+6  1  1 X+6  6  1  1  1  1  1  1  1  1 2X+6  1 2X+3  1  1
 0  1  0  0  6 2X+4 2X+1 X+8 X+4 X+5  1  8  1 X+3  3  1 2X+4  1  8  2  1 2X+1 2X  0  2 X+4 2X+3  1 2X+3  7 2X+7 X+1 X+8 X+6  1  6  1 X+8 2X+2  X  1 2X+5 X+2 2X+5  1  X X+7 2X+3  1 2X 2X+1 X+5  1  5  1 2X+8  0 X+6  1  5 2X+5 X+7 2X+6 2X+3  3  4 2X+2  1  7 X+6 X+6 2X+6 2X+8 2X+7 X+6  X X+5  2  1  1 X+1 2X+1  2 2X+6  X  3 X+6 2X  1  3  1 X+2  2
 0  0  1 2X+4  2  5 2X+1  X X+3 X+2  4 X+1 2X+2  3 X+7  6  0 2X+8  8 X+3 2X+4 X+2  5  1  7  4 X+5 2X X+7 X+6 X+1  2 X+1  1 2X+1 2X+6 2X+3 2X+3 X+5 2X+7  5 2X+3  4  8  8 2X+2  6 2X  8 2X+4 2X+7  6 X+8 2X+8 2X+1  1  1  X X+7  0 2X+2  0 2X+5  1  1  4 2X+7 X+4  3 2X+6  2 2X+4 X+1 X+8  1  1 2X+6 2X+1 X+2 X+2 X+6  4  1  0  5 X+8 X+3 X+8 X+7  0 2X+6 X+5 X+8
 0  0  0  3  3  3  3  3  3  3  0  3  0  3  3  0  6  3  0  6  6  0  0  6  0  6  6  6  0  0  0  6  6  3  3  6  3  0  0  0  6  3  0  6  6  6  3  6  6  6  6  6  3  3  0  3  6  0  6  6  0  0  0  0  3  3  6  3  6  0  3  3  6  3  6  3  6  6  6  0  0  6  3  0  0  6  6  3  6  3  6  6  0

generates a code of length 93 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 177.

Homogenous weight enumerator: w(x)=1x^0+754x^177+840x^178+1842x^179+3642x^180+2922x^181+4374x^182+5078x^183+4074x^184+4662x^185+4958x^186+4044x^187+4350x^188+4246x^189+2850x^190+2706x^191+3096x^192+1374x^193+1272x^194+1108x^195+354x^196+216x^197+134x^198+60x^199+12x^200+40x^201+6x^202+6x^203+8x^204+20x^207

The gray image is a code over GF(3) with n=837, k=10 and d=531.
This code was found by Heurico 1.16 in 10.7 seconds.